1,423 research outputs found

    Catch crop strategy and nitrate leaching following grazed grass-clover

    Get PDF
    Cultivation of grassland presents a high risk of nitrate leaching. This study aimed to determine if leaching could be reduced by growing spring barley (Hordeum vulgare L.) as a green crop for silage with undersown Italian ryegrass (Lolium multiflorum Lam.) compared with barley grown to maturity with or without an undersown conventional catch crop of perennial ryegrass (Lolium perenne L.). All treatments received 0,60 or 120 kg of ammonium-N ha-1 in cattle slurry. In spring 2003, two grass-clover fields (3 and 5 years old, respectively, with different management histories) were ploughed. The effects of the treatments on yield and nitrate leaching were determined in the first year, while the residual effects of the treatments were determined in the second year in a crop of spring barley⁄perennial ryegrass. Nitrate leaching was estimated in selected treatments using soil water samples from ceramic cups. The experiment showed that compared with treatments without catch crop, green barley⁄Italian ryegrass reduced leaching by 163–320 kg Nha-1, corresponding to 95–99%, and the perennial ryegrass reduced leaching to between 34 and 86 kg Nha-1, corresponding to a reduction of 80 and 66%. Also, in the second growing season, leaching following catchcrops was reduced compared with the bare soil treatment. It was concluded that the green barley⁄Italian ryegrass offers advantages not only for the environment but also for farmers, for whom it provides a fodder high in roughage and avoids the difficulties with clover fatigue increasingly experienced by Danish farmers

    Computing Quantiles in Markov Reward Models

    Get PDF
    Probabilistic model checking mainly concentrates on techniques for reasoning about the probabilities of certain path properties or expected values of certain random variables. For the quantitative system analysis, however, there is also another type of interesting performance measure, namely quantiles. A typical quantile query takes as input a lower probability bound p and a reachability property. The task is then to compute the minimal reward bound r such that with probability at least p the target set will be reached before the accumulated reward exceeds r. Quantiles are well-known from mathematical statistics, but to the best of our knowledge they have not been addressed by the model checking community so far. In this paper, we study the complexity of quantile queries for until properties in discrete-time finite-state Markov decision processes with non-negative rewards on states. We show that qualitative quantile queries can be evaluated in polynomial time and present an exponential algorithm for the evaluation of quantitative quantile queries. For the special case of Markov chains, we show that quantitative quantile queries can be evaluated in time polynomial in the size of the chain and the maximum reward.Comment: 17 pages, 1 figure; typo in example correcte

    Precision Primordial 4^4He Measurement with CMB Experiments

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) are two major pillars of cosmology. Standard BBN accurately predicts the primordial light element abundances (4^4He, D, 3^3He and 7^7Li), depending on one parameter, the baryon density. Light element observations are used as a baryometers. The CMB anisotropies also contain information about the content of the universe which allows an important consistency check on the Big Bang model. In addition CMB observations now have sufficient accuracy to not only determine the total baryon density, but also resolve its principal constituents, H and 4^4He. We present a global analysis of all recent CMB data, with special emphasis on the concordance with BBN theory and light element observations. We find ΩBh2=0.025+0.00190.0026\Omega_{B}h^{2}=0.025+0.0019-0.0026 and Yp=0.250+0.0100.014Y_{p}=0.250+0.010-0.014 (fraction of baryon mass as 4^4He) using CMB data alone, in agreement with 4^4He abundance observations. With this concordance established we show that the inclusion of BBN theory priors significantly reduces the volume of parameter space. In this case, we find ΩBh2=0.0244+0.001370.00284\Omega_{B}h^2=0.0244+0.00137-0.00284 and Yp=0.2493+0.00060.001Y_p = 0.2493+0.0006-0.001. We also find that the inclusion of deuterium abundance observations reduces the YpY_p and ΩBh2\Omega_{B}h^2 ranges by a factor of \sim 2. Further light element observations and CMB anisotropy experiments will refine this concordance and sharpen BBN and the CMB as tools for precision cosmology.Comment: 7 pages, 3 color figures made minor changes to bring inline with journal versio

    Radio precursors to neutron star binary mergings

    Full text link
    We discuss a possible generation of radio bursts preceding final stages of binary neutron star mergings which can be accompanied by short gamma-ray bursts. Detection of such bursts appear to be advantageous in the low-frequency radio band due to a time delay of ten to several hundred seconds required for radio signal to propagate in the ionized intergalactic medium. This delay makes it possible to use short gamma-ray burst alerts to promptly monitor specific regions on the sky by low-frequency radio facilities, especially by LOFAR. To estimate the strength of the radio signal, we assume a power-law dependence of the radio luminosity on the total energy release in a magnetically dominated outflow, as found in millisecond pulsars. Based on the planned LOFAR sensitivity at 120 MHz, we estimate that the LOFAR detection rate of such radio transients could be about several events per month from redshifts up to z1.3z\sim1.3 in the most optimistic scenario. The LOFAR ability to detect such events would crucially depend on exact efficiency of low-frequency radio emission mechanism.Comment: 6 pages, 2 figures, Accepted for publication in Astrophysics & Space Science. Largely extended version of ArXiv:0912.521

    Regression modeling weather and biolsolids effects on dryland wheat yields in Eastern Colorado, 2001-2012

    Get PDF
    In the western Great Plains, climate dictates dryland wheat (Triticum aestivum, L) productivity. Producers use inorganic N fertilizers to improve crop yields in this region, while municipalities recycle sewage biosolids in the area. Will biosolids (from the Littleton/Englewood, CO Wastewater Treatment Plant) applications to western Great Plains dryland agroecosystems interact with weather to affect wheat production? To this end, we regressed crop yields on weather variables from 2000 through 2011 at a site about 40 km (approximately 25 miles) east of Byers, CO (Byers). We used SAS (Proc Reg) to develop several multiple regression models to predict crop yields. Our model of choice included four weather parameters for Byers wheat production. Regression variables included September and May precipitation and October and May monthly mean temperatures. Biosolids or nitrogen fertilizer application did not appear in our chosen model. We validated the wheat models using weather data and yields from the Colorado State University (CSU) Crops Testing Program from Akron, Burlington, Lamar, and Yuma, CO. According to t-tests comparing mean observed and predicted yields, the Byers model predicted yields from 2000-2011 at these locations with a +5.3% mean absolute error. A positive result of these analyses is that biosolids produced the same crop yields as commercial N fertilizer from 2001 through 2011

    Regression modeling weather and biolsolids effects on dryland wheat yields in Eastern Colorado, 2001-2012

    Get PDF
    In the western Great Plains, climate dictates dryland wheat (Triticum aestivum, L) productivity. Producers use inorganic N fertilizers to improve crop yields in this region, while municipalities recycle sewage biosolids in the area. Will biosolids (from the Littleton/Englewood, CO Wastewater Treatment Plant) applications to western Great Plains dryland agroecosystems interact with weather to affect wheat production? To this end, we regressed crop yields on weather variables from 2000 through 2011 at a site about 40 km (approximately 25 miles) east of Byers, CO (Byers). We used SAS (Proc Reg) to develop several multiple regression models to predict crop yields. Our model of choice included four weather parameters for Byers wheat production. Regression variables included September and May precipitation and October and May monthly mean temperatures. Biosolids or nitrogen fertilizer application did not appear in our chosen model. We validated the wheat models using weather data and yields from the Colorado State University (CSU) Crops Testing Program from Akron, Burlington, Lamar, and Yuma, CO. According to t-tests comparing mean observed and predicted yields, the Byers model predicted yields from 2000-2011 at these locations with a +5.3% mean absolute error. A positive result of these analyses is that biosolids produced the same crop yields as commercial N fertilizer from 2001 through 2011

    Protein sequence and structure: Is one more fundamental than the other?

    Full text link
    We argue that protein native state structures reside in a novel "phase" of matter which confers on proteins their many amazing characteristics. This phase arises from the common features of all globular proteins and is characterized by a sequence-independent free energy landscape with relatively few low energy minima with funnel-like character. The choice of a sequence that fits well into one of these predetermined structures facilitates rapid and cooperative folding. Our model calculations show that this novel phase facilitates the formation of an efficient route for sequence design starting from random peptides.Comment: 7 pages, 4 figures, to appear in J. Stat. Phy

    Quasicondensate and superfluid fraction in the 2D charged-boson gas at finite temperature

    Full text link
    The Bogoliubov - de Gennes equations are solved for the Coulomb Bose gas describing a fluid of charged bosons at finite temperature. The approach is applicable in the weak coupling regime and the extent of its quantitative usefulness is tested in the three-dimensional fluid, for which diffusion Monte Carlo data are available on the condensate fraction at zero temperature. The one-body density matrix is then evaluated by the same approach for the two-dimensional fluid with e^2/r interactions, to demonstrate the presence of a quasi-condensate from its power-law decay with increasing distance and to evaluate the superfluid fraction as a function of temperature at weak coupling.Comment: 9 pages, 2 figure

    Antimatter from the cosmological baryogenesis and the anisotropies and polarization of the CMB radiation

    Full text link
    We discuss the hypotheses that cosmological baryon asymmetry and entropy were produced in the early Universe by phase transition of the scalar fields in the framework of spontaneous baryogenesis scenario. We show that annihilation of the matter-antimatter clouds during the cosmological hydrogen recombination could distort of the CMB anisotropies and polarization by delay of the recombination. After recombination the annihilation of the antibaryonic clouds (ABC) and baryonic matter can produce peak-like reionization at the high redshifts before formation of quasars and early galaxy formation. We discuss the constraints on the parameters of spontaneous baryogenesis scenario by the recent WMAP CMB anisotropy and polarization data and on possible manifestation of the antimatter clouds in the upcoming PLANCK data.Comment: PRD in press with minor change

    Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes

    Full text link
    Due to its large surface area and strongly attractive potential, a bundle of carbon nanotubes is an ideal substrate material for gas storage. In addition, adsorption in nanotubes can be exploited in order to separate the components of a mixture. In this paper, we investigate the preferential adsorption of D_2 versus H_2(isotope selectivity) and of ortho versus para(spin selectivity) molecules confined in the one-dimensional grooves and interstitial channels of carbon nanotube bundles. We perform selectivity calculations in the low coverage regime, neglecting interactions between adsorbate molecules. We find substantial spin selectivity for a range of temperatures up to 100 K, and even greater isotope selectivity for an extended range of temperatures,up to 300 K. This isotope selectivity is consistent with recent experimental data, which exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure
    corecore